Hello friends!!!!!
problem of the day
PYTHON
11/3/20241 min read
'''
Problem
Root of a function f(x) is defined as the value x where f(x) = 0
Consider a quadratic function ,f(x) = x^2 + 3x - 4
Calculate the value of f(x) at the points x = 7,x = -1,x = 1
a) Calculate the value of the function f(x) at x = 2.
b) Calculate the value of the function f(x) at x = 1
'''
#root_1 and root_2 are values of x where f(x) = 0
#let d = determinant of f(x)
f = x**2 + 3*x -4
d = 3**2 - 4*1*(-4)
root_1 = (-3 + (d**0.5)) / 2
root_2 = (-3 - (d**0.5)) / 2
print(f"{root_1},{root_2} are the roots of the equation f(x).")
def f(x) :
return x**2 +3*x - 4
values = {x : f(x) for x in [-1,1,2,7]}
for x,value in values.items():
print(f"f({x}) = {value}")
Output:
1.0,-4.0 are the roots of the equation f(x).
f(-1) = -6
f(1) = 0
f(2) = 6
f(7) = 66